FOREWORD: International Conference on Planetary Boundary Layer and Climate Change

Mathematics – Logic

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

One of the greatest achievements of climate science has been the establisment of the concept of climate change on a multitude of time scales. The Earth's complex climate system does not allow a straightforward interpretation of dependences between the external parameter perturbation, internal stochastic system dynamics and the long-term system response. The latter is usually referred to as climate change in a narrow sense (IPCC, 2007). The focused international conference "Planetary Boundary Layers and Climate Change" has addressed only time scales and dynamical aspects of climate change with possible links to the turbulent processes in the Planetary Boundary Layer (PBL). Although limited, the conference topic is by no means singular. One should clearly understand that the PBL is the layer where 99% of biosphere and human activity are concentrated. The PBL is the layer where the energy fluxes, which are followed by changes in cryosphere and other known feedbacks, are maximized. At the same time, the PBL processes are of a naturally small scale. What is the averaged long-term effect of the small-scale processes on the long-term climate dynamics? Can this effect be recognized in existing long-term paleo-climate data records? Can it be modeled? What is the current status of our theoretical understanding of this effect? What is the sensitivity of the climate model projections to the representation of small-scale processes? Are there significant indirect effects, e.g. through transport of chemical components, of the PBL processes on climate? These and other linked questions have been addressed during the conference.
The Earth's climate has changed many times during the planet's history, with events ranging from ice ages to long periods of warmth. Historically, natural factors such as the amount of energy released from the Sun, volcanic eruptions and changes in the Earth's orbit have affected the Earth's climate. Beginning late in the 18th century, human activities associated with the Industrial Revolution such as the addition of greenhouse gases and aerosols has changed the composition of the atmosphere. These changes are likely to have influenced temperature, precipitation, storms and sea level (IPCC, 2007). However, these features of the climate also vary naturally, so determining what fraction of climate changes are due to natural variability versus human activities is challenging and not yet a solved problem.
Africa is vulnerable to climate change as its ability to adaptat and mitigate is considerably dampened (IPCC, 2007). Climate change may impede a nations ability to achieve sustainable development and the Millennium Development Goals, and because of that Africa (particularly sub-tropical Africa) will experience increased levels of water stress and reduced agricultural yields of up to 50% by 2020. An example of the scale of the region's vulnerability was demonstrated during the last very dry year (1991/92) when 30% of the southern African population was put on food aid and more than one million people were displaced. Climate change in Africa is essentially dependent on our understanding of the PBL processes both due to the indispensible role of the atmospheric convection in the African climate and due to its tele-connections to other regions, e.g. the tropical Pacific and Indian monsoon regions.
Although numerous publications attribute the observed changes to one or another modification of the convective patterns, further progress is impeded by imperfections of the small-scale process parameterizations in the models. The uncertainties include parameter uncertainties of known physical processes, which could be reduced through better observations/modelling, as well as uncertainties in our knowledge of physical processes themselves (or structural uncertainties), which could be reduced only through theoretical development and design of new, original observations/experiments (Oppenheimer et al., Science, 2007). Arguably, the structural uncertainties is hard to reduce and this could be one of the reasons determining slow progress in narrowing the climate model uncertainty range over the last 30 years (Knutti and Hagerl, Nature Geoscience, 2008). One of the most prominent structural uncertainties in the ongoing transient climate change is related to poor understanding and hence incorrect modelling of the turbulent physics and dynamics processes in the planetary boundary layer. Nevertheless, the climate models continue to rely on physically incorrect boundary layer parameterizations (Cuxart et al., BLM, 2006), whose erroneous dynamical response in the climate models may lead to significant abnormalities in simulated climate.
At present, international efforts in theoretical understanding of the turbulent mixing have resulted in significant progress in turbulence simulation, measurements and parameterizations. However, this understanding has not yet found its way to the climate research community. Vice versa, climate research is not usually addressed by the boundary layer research community. The gap needs to be closed in order to crucially complete the scientific basis of climate change studies. The focus of the proposed forum could be formulated as follows: The planetary boundary layer determines several key parameters controlling the Earth's climate system but being a dynamic sub-system, just a layer of turbulent mixing in the atmosphere/ocean, it is also controlled by the climate system and its changes. Such a dynamic relationship causes a planetary boundary layer feedback (PBL-feedback) which could be defined as the response of the surface air temperature on changes in the vertical turbulent mixing. The forum participants have discussed both climatological and fluid dynamic aspects of this response, in order to quantify their role in the Earth's transient heat uptake and its representation in climate models. The choice of the forum location and dates are motivated by the role of tropical oceans and convection in the climate system and the prominent demonstration of the climate sensitivity to the ocean heat uptake observed off Cape Town.
The international conference responded to the urgent need of advancing our understanding of the complex climate system and development of adequate measures for saving the planet from environmental disaster. It also fits well with the Republic of South African government's major political decision to include the responses to global change/climate change at the very top of science and technology policy.
The conference participants are grateful to the Norway Research Council and the National Research Foundation (NRF) RSA who supported the Conference through the project "Analysis and Possibility for Control of Atmospheric Boundary Layer Processes to Facilitate Adaptation to Environmental Changes" realized in the framework of the Programme for Research and Co-operation Phase II between the two countries. Kirstenbosh Biodiversity Institute and Botanical Gardens, Cape Town contribution of securing one of the most beautiful Conference venues in the world and technical support is also highly appreciated.
G. Djolov and I. Esau Editors
Conference_Photo
Conference Organising Comittee Djolov, G.South AfricaUniversity of Pretoria Esau, I.NorwayNansen Environmental and Remote Sensing Center Hewitson, B.South AfricaUniversity of Cape Town McGregor, J.AustraliaCSIRO Marine and Atmospheric Research Midgley, G.South AfricaSouth African National Botanical Institute Mphepya, J.South AfricaSouth African Weather Service Piketh, S.South AfricaUniversity of the Witwatersrand Pielke, R.USAUniversity of Colorado, Boulder Pienaar, K.South AfricaUniversity of the North West Rautenbach, H.South AfricaUniversity of Pretoria Zilitinkevich, S.FinlandUniversity of Helsinki
The conference was organized by: University of Pretoria Nansen Environmental and Remote Sensing Center With support and sponsorship from: Norwegian Research Council (grant N 197649) Kirstenbosh Biodiversity Institute and Botanical Gardens

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

FOREWORD: International Conference on Planetary Boundary Layer and Climate Change does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with FOREWORD: International Conference on Planetary Boundary Layer and Climate Change, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and FOREWORD: International Conference on Planetary Boundary Layer and Climate Change will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-915976

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.