Computer Science
Scientific paper
Feb 2003
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2003noao.prop...43g&link_type=abstract
NOAO Proposal ID #2003A-0043
Computer Science
Scientific paper
Low mass x-ray binaries (LMXBs) contain compact, black hole (BH) or neutron star (NS) primaries, and cool, low-mass secondary stars. A limited number of BHs and NSs have accurate mass measurements. It is important to determine the primary mass of the LMXBs to better understand how BH masses influence their outburst behavior, and to better constrain the NS equations of state. To determine the mass of the primary object we need to measure the orbital inclination, i. We propose to determine i for two BH LMXBs, XTE J1859+226 and GRS 1009-45 (=N Vel 93) through modeling of their ellipsoidal variations. Because most LMXBs are not eclipsing, modeling their light curves is currently the only feasible method for determining the inclination. We will model the light curves with WD98. We also propose to identify the optical counterpart to the NS system EXO 1747-214, in order to begin the process of measuring the NS mass. We have successfully used NOAO facilities and this modeling technique to find accurate BH masses in four LMXBs. In order to expand the sample of known BH and NS systems, we request seven nights on the KPNO and CTIO 4m to obtain optical and infrared data on XTE J1859+226, GRS 1009-45, and EXO 1747-214.
Gelino Dawn M.
Tomsick John A.
No associations
LandOfFree
Studying Low Mass X-Ray Binaries: Revealing the Optical Counterpart in 1747-214 and Measuring the Masses of the Black Holes in 1859+226 and 1009-45 does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Studying Low Mass X-Ray Binaries: Revealing the Optical Counterpart in 1747-214 and Measuring the Masses of the Black Holes in 1859+226 and 1009-45, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Studying Low Mass X-Ray Binaries: Revealing the Optical Counterpart in 1747-214 and Measuring the Masses of the Black Holes in 1859+226 and 1009-45 will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-912124