Stability of the relativistic rotating electron-positron jet and superluminal motion of knots

Astronomy and Astrophysics – Astronomy

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

We investigate the hydrodynamic stability of a relativistic flow of magnetized plasma in the simplest case where the energy density of the electromagnetic fields is much greater than the energy density of the matter (including the rest mass energy). This is the force-free approximation. We consider the case of a light cylindrical jet in cold and dense environment, so the jet boundary remains at rest. Numerical calculations show that in the force-free approximation, the electron-positron jet with uniform poloidal magnetic field is stable for all velocities of longitudinal motion and rotation. The dispersion curves w = w(k||) have a minimum for k||o ~= 1/R (R is the jet radius). This results in accumulation of perturbations inside the jet with wavelength of the order of the jet radius. The wave crests of the perturbation pattern formed in such a way move along the jet with the velocity exceeding light speed. If one has relativistic electrons emitting synchrotron radiation inside the jet, then this pattern will be visible. This provides us with a new type of superluminal source. If the jet is oriented close to the line of sight, then the observer will see knots moving backward to the core.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Stability of the relativistic rotating electron-positron jet and superluminal motion of knots does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Stability of the relativistic rotating electron-positron jet and superluminal motion of knots, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Stability of the relativistic rotating electron-positron jet and superluminal motion of knots will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-852947

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.