Other
Scientific paper
Oct 2008
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2008iaus..252..189w&link_type=abstract
The Art of Modeling Stars in the 21st Century, Proceedings of the International Astronomical Union, IAU Symposium, Volume 252, p
Other
1
Stars: Mass Loss, Stars: Evolution
Scientific paper
Observations tend to select mass loss rates near the critical rate, Ṁcrit = M /L. There are two reasons for this. In some situations, such as near the tip of the AGB, the mass loss rate is very sensitive to stellar parameters. In this case, stars with Ṁ ≪ Ṁcrit have dust-free, hard-to-measure mass loss rates while stars with Ṁ ≫ Ṁcrit do not survive very long and thus make up a small fraction of any sample. Selection effects dominate the fitting of empirical formulae; observations of mass loss rates tell us more about which stars are losing mass than about how a star loses mass. In other situations, such as for some of the stars along the RGB, a steady state situation occurs where the loss of mass leads to a decrease in mass loss rate while the evolutionary changes lead to an increase; the result is a steady state with Ṁ = Ṁcrit. To determine the envelope mass and composition at the end of a phase of intensive mass loss requires stellar evolution models capable of responding on a time scale ~ tKH and thus, a new generation of stellar modeling codes.
No associations
LandOfFree
Deathzones and exponents: A different approach to incorporating mass loss in stellar evolution calculations does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Deathzones and exponents: A different approach to incorporating mass loss in stellar evolution calculations, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Deathzones and exponents: A different approach to incorporating mass loss in stellar evolution calculations will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-850421