Astronomy and Astrophysics – Astrophysics
Scientific paper
Apr 2003
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2003eso..pres....8.&link_type=abstract
ESO Press Release, 04/2003
Astronomy and Astrophysics
Astrophysics
Scientific paper
Spectacular VLT Photos Unveil Mysterious Nebulae
Summary
Quite a few of the most beautiful objects in the Universe are still shrouded in mystery. Even though most of the nebulae of gas and dust in our vicinity are now rather well understood, there are some which continue to puzzle astronomers.
This is the case of a small number of unusual nebulae that appear to be the subject of strong heating - in astronomical terminology, they present an amazingly "high degree of excitation". This is because they contain significant amounts of ions, i.e., atoms that have lost one or more of their electrons. Depending on the atoms involved and the number of electrons lost, this process bears witness to the strength of the radiation or to the impact of energetic particles.
But what are the sources of that excitation? Could it be energetic stars or perhaps some kind of exotic objects inside these nebulae? How do these peculiar objects fit into the current picture of universal evolution?
New observations of a number of such unusual nebulae have recently been obtained with the Very Large Telescope (VLT) at the ESO Paranal Observatory (Chile). In a dedicated search for the origin of their individual characteristics, a team of astronomers - mostly from the Institute of Astrophysics & Geophysics in Liège (Belgium) [1] - have secured the first detailed, highly revealing images of four highly ionized nebulae in the Magellanic Clouds, two small satellite galaxies of our home galaxy, the Milky Way, only a few hundred thousand light-years away.
In three nebulae, they succeeded in identifying the sources of energetic radiation and to eludicate their exceptional properties: some of the hottest, most massive stars ever seen, some of which are double.
With masses of more than 20 times that of the Sun and surface temperatures above 90 000 degrees, these stars are truly extreme.
PR Photo 09a/03: Nebula around the hot star AB7 in the SMC. PR Photo 09b/03: Nebula near the hot Wolf-Rayet star BAT99-2 in the LMC. PR Photo 09c/03: Nebula near the hot binary star BAT99-49 in the LMC. PR Photo 09d/03: The N44C Nebula in the LMC. Four unique images of highly excited nebulae in the Magellanic Clouds
ESO PR Photo 09a/03
ESO PR Photo 09a/03
[Preview - JPEG: 400 x 472 pix - 74k [Normal - JPEG: 800 x 943 pix - 720k] [Full-Res - JPEG: 1200 x 1414 pix - 1.2M]
ESO PR Photo 09b/03
ESO PR Photo 09b/03
[Preview - JPEG: 400 x 466 pix - 70k [Normal - JPEG: 800 x 931 pix - 928k] [Full-Res - JPEG: 1200 x 1397 pix - 1.8M]
ESO PR Photo 09c/03
ESO PR Photo 09c/03
[Preview - JPEG: 400 x 469 pix - 74k [Normal - JPEG: 800 x 937 pix - 1.1M] [Full-Res - JPEG: 1200 x 1405 pix - 2.2M]
ESO PR Photo 09d/03
ESO PR Photo 09d/03
[Preview - JPEG: 400 x 473 pix - 28k [Normal - JPEG: 800 x 945 pix - 368k] [Full-Res - JPEG: 1200 x 1418 pix - 600k]
Captions: PR Photo 09a/03 is a reproduction of a "near-true" three-colour composite image of the highly excited nebula around the hot double star AB7 in the Small Magellanic Cloud (SMC), obtained in January 2002 with the FORS1 multi-mode instrument at the 8.2-m VLT MELIPAL telescope at the Paranal Observatory (Chile). It is based on three exposures through narrow-band optical (interference) filters that isolate the light from specific atoms and ions. In this rendering, the blue colour represents the light from singly ionized Helium (He II; wavelength 468.6 nm; exposure time 30 min), green corresponds to doubly ionized oxygen ([O III]; 495.7 + 500.7 nm; 5 min) and red to hydrogen atoms (H; H-alpha line at 656.2 nm; 5 min). Of these three ions, He II is the tracer of high excitation, i.e. the bluest areas of the nebula are the hottest. The sky field measures 400 x 400 arcsec2; the original pixel size on the 2k x 2k CCD is 0.23 arcsec. North is up and east to the left. Before combination, the CCD frames were flat-fielded and cleaned of cosmic-rays. Moreover, the stars in the blue (He II) image were removed in order to provide a clearer view of the surrounding nebular emission. The reproduced brightness is proportional to the square-root of the actual intensity; this increases the "dynamical range" of the image, i.e. it shows better areas of very different brightness. PR Photo 09b/03 is a similar reproduction of the sky area with the nebula near the Wolf-Rayet (WR) star BAT99-2 in the LMC. The filters are the same, but the exposure times were 60, 5 and 5 min for the blue, green and red exposures, respectively. PR Photo 09c/03 shows, in the same way, the nebula around the hot double star BAT99-49 in the LMC. The filters are the same, but the exposure times were 45, 5 and 5 min for the blue, green and red exposures, respectively. Finally, PR Photo 09d/03 shows the N44C nebula in the LMC, photographed through the same optical filters with exposure times of 20, 5 and 5 min for the blue, green and red exposures, respectively. The sky field measures 208 x 208 arcsec2.
The above collection of impressive VLT colour photos is unique. They show some of the highest excitation nebulae in the Magellanic Clouds (MCs), two satellite galaxies of our own Milky Way.
They may be enjoyed for their beauty alone. However, each of them also carries a message about the depicted objects, their properties and evolutionary state. In fact, they represent the spectacular and visible result of a dedicated research programme begun by an international team of astronomers from Belgium and the United States of America [1], and aimed at unravelling the secrets of unsually hot nebulae.
What makes them shine? From where come the enormous energies needed to make these nebulae glow in the light of ionized helium atoms? Emission nebulae
Nebulae are huge clouds of gas and dust, the cosmic material from which stars and planets form, cf. the Appendix. Many of them emit their own light, and are then called emission nebulae. Astronomers distinguish between Planetary Nebulae (PNe), Supernova Remnants (SNRs) and "normal" emission nebulae or "HII regions" (pronounced "Eitch-two").
PNe result from the death of comparatively light stars, similar to our Sun, while SNRs originate from the explosive death of heavier stars. The collision between the surrounding interstellar matter and that ejected by the dying star, accompanied by the intense radiation from the hot stellar remnant (white dwarf, neutron star) excites the gas and makes it shine brightly.
But the radiation of young hot stars embedded in an interstellar cloud is also able to heat the surrounding gas, resulting in the apparition of another type of emission nebula, that shines mostly in the light of ionized hydrogen (H) atoms. Such nebulae are therefore often referred to as "HII regions". The well-known Orion Nebula is an outstanding example of that type of nebula, cf. ESO PR Photos 03a-c/01. Highly excited nebulae
The hotter the central object of an emission nebula, whether a white dwarf, a neutron star or just a young star, the hotter and more excited will be the surrounding nebula. The word "excitation" refers to the degree of ionization of the nebular gas. The more energetic the impinging particles and radiation, the more electrons will be lost and higher is the degree of excitation.
Only in the most excited nebulae is there enough ultraviolet energy to completely ionize the helium atoms. When these ions subsequently capture an electron, this process gives rise to the characteristic radiation of single ionized helium (HeII). A particularly useful way to trace the very highest excitation areas is thus to map the distribution of HeII by means of imaging or spectroscopic observations that are sensitive to the radiation from these helium ions, for example at a particular wavelength in blue light (468.6 nm).
It is common to detect the presence of HeII in Planetary Nebulae around extremely hot white dwarf stars, but not in "normal" HII regions. However, a few otherwise seemingly normal HII regions reveal the characteristics of high excitation. One of them is located in our own Milky Way galaxy, another has been found in the nearby galaxy IC 1613, and five others are situated in the Magel
No affiliations
No associations
LandOfFree
Really Hot Stars does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Really Hot Stars, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Really Hot Stars will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-846947