Statistics
Scientific paper
Sep 1995
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1995metic..30r.484b&link_type=abstract
Meteoritics, vol. 30, no. 5, page 484-485
Statistics
1
Asteroid Belt, Isotopes, Oxygen, Meteorites, Parent Bodies, Spectral Reflectance
Scientific paper
One of the shibboleths of asteroid spectroscopy for the past 25 years has been that a detailed knowledge of meteoritics is essential for proper interpretation of asteroid spectra. In fact, several recent spectroscopic discoveries have overturned long-standing models based on popular interpretations of meteorite data. A case can be made that spectroscopists could have made much faster progress if they had worked in total isolation from meteoritics. Consider the first three spectral classes identified in the 1970s: Vesta: The very first asteroid spectrum was unambigously basaltic, yet some meteoriticists have persistently resisted the obvious conclusion that the HED clan comes from Vesta, because A) Vesta is "impossibly" far from the known dynamical escape hatches; and B) the HED O-isotope data "establishes" a lirlk with pallasites and IIIAB irons, suggesting that their parent was some other completely disrupted asteroid. The discovery of a "dynamically impossible" extended family of basaltic fragments extending from Vesta to the 3:1 resonance [1] makes it clear that HEDs must originate on Vesta, and that dynamical, physical and isotopic arguments all led in the wrong direction. Stony: In the early 1970s meteorite fall statistics led to an expectation that many of the larger asteroids would be ordinary chondrites. When the most common class of asteroids proved to have silicate absorption bands, many concluded that these objects were the expected ordinary chondrite parent asteroids. The later discovery that S-type spectra do not actually resemble OCs was rationalized with imaginary "space weathering" processes (which have never been observed or simulated despite 20 years of wasted effort). Now that the real weathering trends in S asteroids have been resolved [2] and asteroids which actually do look like OCs discovered [3], it is clear that the eDhre controversy over S asteroid composition was a blind alley that could have been avoided by taking the spectra at face value. Carbonaceous: These asteroids were interpreted as "carbonaceous chondrites", due to a superficial resemblance in spectral shape and their lesser abundance than S-types. Later it was shown that the most common CCs, COs and CVs, actually fall into the classical S class (now broken off as a separate K class). But Cs and the related G, B, and F classes have been persistently interpreted as CM/CI analogs even though their only resolvable spectral feature is much shallower than that of the CM/CI meteontes. This difference has been rationalized with more "space weathering" processes. However, recently rare highly metamorphosed CCs have been shown to match the C-G-B-F asteroid without "weathering"[4], suggesting that CIs and CMs come from some small, undiscovered class of outer belt asteroids analagous to Qs in the inner belt. These examples demonstrate an evolution of our thinking from belief in a close relationship between the meteorite population and the asteroids (with any discordant results from the telescope explained away by ad hoc mechanisms), toward a model in which the gigantic meteorite data set is seen as highly biased and non-representative of the asteroid belt, and in many cases useless due to the multiple possible interpretations of the same data. It is time for a more balanced approach to asteroid science, in which meteoritics plays a supplementary role to direct studies of asteroids, rather that the dominant one it has to date. References: [1] Binzel et al. (1993) Science, 260, 186-191. [2] Gaffey M. J. et. al. (1994) Icarus, 106, 573-602. [3] Binzel R. P. et al. (1994) Science, 262, 1541-1543. [4] Hiroi T. et al. (1993) LPS XXIV, 659-660.
No associations
LandOfFree
Asteroid Spectroscopy: A Declaration of Independence does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Asteroid Spectroscopy: A Declaration of Independence, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Asteroid Spectroscopy: A Declaration of Independence will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-830396