Other
Scientific paper
Sep 1995
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1995metic..30q.593w&link_type=abstract
Meteoritics, vol. 30, no. 5, page 593
Other
1
Angrites, Elements, Volatile, Eucrites, Fu Orionis, Gallium, Meteorites, Allende, Angra Dos Reis, Asuka 881371, Lew 86010, Lew 87051
Scientific paper
Angrites are commonly viewed as extremely volatile-depleted, and a related notion is that they formed by differentiation of a very CAI-rich material [e.g., 1]. Partial melting experiments reportedly reproduce the bulk compositions (although not fassaite-rich mineralogy) of angrites with Allende as starting material [2], but highly CAI-rich parent materials are difficult to reconcile with isotopic and REE data [3,4]. Mittlefehldt and Lindstrom [5] inferred from the low Na/Al ratios of angrites that outgassing, and thus primordial magmatism, was more intense on their parent body than on the eucrite parent asteroid. Of seven elements that (a) have been adequately determined in angrites, and (b) are far more volatile (solar-nebula 50% condensation T [6] = 690-430 K) than the alkalis (1000-910 K), four are enriched, and none is significantly depleted, in average angrite compared to average eucrite or low-Ti mare basalt (Figure). Gallium, which is of intermediate volatility (830 K), is depleted to roughly the same extent as Na and K. Results for A881371 [3] are incomplete (Zn, 6 micrograms/g, is near INAA detection limit), but even based only on AdoR and the two LEW angrites, this pattern seems firmly established. Apparent gas cavities in A881371 [7] also suggest that volatiles are far from uniformly depleted. The only elements known to be depleted, as volatiles, by clearly significant factors in angrites versus eucrites or lunar basalts, are alkalis plus gallium. Besides being moderately volatile, a noteworthy characteristic shared among Ga and alkalis (and not shared with elements such as Br, Se, and Zn) is that these elements probably tend to partition into crustal feldspar during gross differentiation of small (low-pressure) bodies. If gallium + alkalis were depleted by a single process starting from "normal" chondritic material, that process would seem to require selective exposure of a feldspar-enriched region (i.e., crust) to extremely high temperature. Igneous crystallization of the angrites occurred when the solar system was still extremely young, and apparently <=2 Ma after the volatile-depletion process [4]. The data of [4] eliminate 26Al as a potential heat source for magmatism. The angrite volatile pattern may be the product of heating by an intense, short-lived heat source that melted and partially vaporized the crust of an asteroid(s) (not necessarily the final angrite asteroid), without much affecting the deep interior(s), which later (through mixing and/or magmatism) replenished the angritic materials in most volatiles, but not alkalis and Ga. Exogenic heating, as in the often-conjectured (but hard to test) hypothesis that a major early heat source was enhanced solar luminosity (as in FU-Orionis cycles), would seem to be required. LEW 87051 and A881371 are rich in compositionally diverse olivine xenocrysts, and A881371 contains a possible FeS xenocryst [7]. These, and the angrites' great siderophile diversity [3], tend to suggest that magmatism and intensely disruptive cratering (with mixing of precursor materials) were contemporaneous. This scenario is admittedly speculative, but the volatile-depletion pattern is difficult to rationalize with any other model. References: [1] Prinz M. and Weisberg M. (1995) Antarct. Meteorites, XX, 207-210. [2] Jurewicz A. et al. (1993) GCA, 57, 2123-2139. [3] Warren P. et al. (1995) Antarct. Meteorites, XX, 261-264. [4] Lugmair G. and Galer S. 1992) GCA, 56, 1673-1694. [5] Mittlefehldt D. and Lindstrom M. (1990) GCA, 54, 3209-3218. [6] Wasson J. (1985) Meteorites. [7] Warren P. and Davis A. (1995) Antarct. Meteorites, XX, 257-260.
Kallemeyn Gregory W.
Warren Harry P.
No associations
LandOfFree
Angrites: A Volatile-rich Variety of Asteroidal Basalt (Except for Alkalis and Gallium!) does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Angrites: A Volatile-rich Variety of Asteroidal Basalt (Except for Alkalis and Gallium!), we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Angrites: A Volatile-rich Variety of Asteroidal Basalt (Except for Alkalis and Gallium!) will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-830340