Astronomy and Astrophysics – Astronomy
Scientific paper
Jan 2005
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2005hia....13..776b&link_type=abstract
In: Highlights of Astronomy, Vol. 13, as presented at the XXVth General Assembly of the IAU - 2003 [Sydney, Australia, 13 - 26 J
Astronomy and Astrophysics
Astronomy
Moon Core
Scientific paper
We present a study of the dynamical behavior of a molten core inside the Moon related to the mantle by inertial coupling. In order to integrate the lunar core-mantle interaction in a realistic model of the Moon's rotation we have used our SONYR (acronym of Spin-Orbit N-bodY Relativistic) model of the solar System including the Moon's spin-orbit motion. This model was previously built in accordance with the requirements of the Lunar Laser Ranging observational accuracy. We have extended this model to the spin-orbit couplings of the terrestrial planets in order to compare different dynamical behaviors of core-mantle interactions in these planets (Mercury Venus Earth and Mars).
Our core-mantle mechanism prove to be adequate to excite the two resonant frequencies of the lunar physical librations namely 2.9 and 80.1 years. Signature of such a core with for instance a 1/10 homothetic ratio appears clearly on the proper rotation angle; the amplitude is then around 12 milliarcseconds and its period 2.9 years. Besides we present the results obtained for various lunar nucleus radii and various initial nutations of the core relatively to the mantle. Other computations and comparisons are in progress involving Mercury the Earth and Mars.
No associations
LandOfFree
Centrifugal librations due to lunar core-mantle couplings does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Centrifugal librations due to lunar core-mantle couplings, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Centrifugal librations due to lunar core-mantle couplings will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-806397