Computer Science
Scientific paper
May 1990
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1990oleb...20..279f&link_type=abstract
Origins of Life and Evolution of the Biosphere, Volume 20, Issue 3-4, pp. 279-291
Computer Science
10
Scientific paper
2'-d-5'-GMP and 2'-d-5'-AMP bind 2 times more strongly to montmorillonite 22A than do 2'-d-5'-CMP and 5'-TMP. The dinucleotide d(pG)2 forms in 9.2% yield and the cyclic dinucleotide c(dpG)2 in 5.4% yield in the reaction of 2'-d-5'-GMP with EDAC in the presence of montmorillonite 22A. The yield of d(pC)2 (2.0%) is significantly lower but comparable to that obtained from 5'-TMP. The yield of dimers which contain the phosphodiester bond decreases as the reaction medium is changed from 0.2 M NaCl to a mixture of 0.2 M NaCl and 0.075 M MgCl2. A low yield of d(pA)2 was observed in the condensation reaction of 5'-ImdpA on montmorillonite 22A. The cyclic nucleotide (3',5'-cdAMP) was obtained in 14% yield from 3'-ImdpA. The yield of d(pA)2 obtained when EDAC is used as the condensing agent increases with increasing iron content of the Na+-montmorillonite used as catalyst. Evidence is presented which shows that the acidity of the Na+-montmorillonite is a necessary but not sufficient factor for the montmorillonite catalysis of phosphodiester bond formation.
Ertem Gözen
Ferris James P.
Kamaluddin
No associations
LandOfFree
Oligomerization reactions of deoxyribonucleotides on montmorillonite clay: The effect of mononucleotide structure, phosphate activation and montmorillonite composition on phosphodiester bond formation does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Oligomerization reactions of deoxyribonucleotides on montmorillonite clay: The effect of mononucleotide structure, phosphate activation and montmorillonite composition on phosphodiester bond formation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Oligomerization reactions of deoxyribonucleotides on montmorillonite clay: The effect of mononucleotide structure, phosphate activation and montmorillonite composition on phosphodiester bond formation will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-783472