Mathematics – Classical Analysis and ODEs
Scientific paper
2006-08-30
Mathematics
Classical Analysis and ODEs
24 pages
Scientific paper
In [Electron. J. Combin. 10 (2003), #R10], the author presented a new basic hypergeometric matrix inverse with applications to bilateral basic hypergeometric series. This matrix inversion result was directly extracted from an instance of Bailey's very-well-poised 6-psi-6 summation theorem, and involves two infinite matrices which are not lower-triangular. The present paper features three different multivariable generalizations of the above result. These are extracted from Gustafson's A_r and C_r extensions and of the author's recent A_r extension of Bailey's 6-psi-6 summation formula. By combining these new multidimensional matrix inverses with A_r and D_r extensions of Jackson's 8-phi-7 summation theorem three balanced very-well-poised 8-psi-8 summation theorems associated with the root systems A_r and C_r are derived.
No associations
LandOfFree
Multilateral inversion of A_r, C_r and D_r basic hypergeometric series does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Multilateral inversion of A_r, C_r and D_r basic hypergeometric series, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Multilateral inversion of A_r, C_r and D_r basic hypergeometric series will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-74486