Astronomy and Astrophysics – Astrophysics
Scientific paper
Aug 2000
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2000a%26a...360.1170r&link_type=abstract
Astronomy and Astrophysics, Vol. 360, p.1170-1186
Astronomy and Astrophysics
Astrophysics
107
Radiative Transfer, Accretion, Accretion Disks, Galaxies: Active, Galaxies: Seyfert, X-Rays: Galaxies, X-Rays: Stars
Scientific paper
We investigate the model of the disc/corona accretion flow around the black hole. Hot accreting advective corona is described by the two-temperature plasma in pressure equilibrium with the cold disk. Corona is powered by accretion but it also exchanges energy with the disk through the radiative interaction and conduction. The model, parameterized by the total (i.e. disk plus corona) accretion rate, ˙ m and the viscosity parameter, α, uniquely determines the fraction of energy released in the corona as a function of radius and, in particular, the transition radius to the single-phase flow. Self-consistent solutions with the mass exchange between phases display radial dependence of the parameters qualitatively different from the `static' case, without the mass exchange. Corona covers the entire disk. The character of the radial dependence of the fraction of energy dissipated in the corona is qualitatively different for low and high total accretion rate. If the total accretion rate is low, the corona becomes stronger towards the central object, and finally the disc completely evaporates, changing the accretion pattern into the single hot advection-dominated accretion flow (ADAF). For intermediate accretion rates the reverse process - condensation - becomes important, allowing possibly for a secondary disc rebuilding in the innermost part of the system. High accretion rates always prevent the transition into ADAF, and the cold disk extends down to the marginally stable orbit. The transition radius, rtr, between the outer, two- phase flow and the inner, single-phase, optically thin flow, is equal to 4.51&mathaccent "705Frelax dot-4/3α0.17RSchw for &mathaccent "705Frelax dot; < 6.9 × 10-2α0.13.3 and then contracts to the marginally stable orbit in a discontinuous way above this critical value of &mathaccent "705Frelax dot;. This model reproduces all characteristic luminosity states of accretion black hole without any additional ad hoc assumptions. In particular the mechanism of the disk evaporation leads to a new, almost horizontal branch on the accretion flow's stability curve (i.e. the dependence of accretion rate on surface density) at the critical accretion rate. This branch, together with the upper, advection dominated branch for optically thick disks, form boundaries for the time evolution of unstable, radiation pressure dominated disk. Therefore the disk at high accretion rates, corresponding to Very High State in GBH and perhaps to Narrow Line Seyfert 1, and quasar stage may oscillate between the disk dominated state and the evaporation branch state, with only a weak contribution from the cold disk emission. The position of this branch for α = 0.08 with respect to the gas pressure dominated branch is consistent with the presence of only weakly variable High State in GBH and the absence of a similar state in AGN: all the quasars vary considerably if monitored in timescales of years. We also suggest a new interpretation of the Intermediate State, consistent with the presence of the strong reflected component.
Czerny Bozena
Rozanska Agata
No associations
LandOfFree
Vertical structure of the accreting two-temperature corona and the transition to an ADAF does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Vertical structure of the accreting two-temperature corona and the transition to an ADAF, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Vertical structure of the accreting two-temperature corona and the transition to an ADAF will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-734289