Mathematics – Algebraic Geometry
Scientific paper
2011-04-17
Mathematics
Algebraic Geometry
54 pages, thoroughly revised and expanded version of arXiv:1104.3350v1 [math.AG]
Scientific paper
Let $X$ be a smooth projective variety over a finite field $\F$. We discuss the unramified cohomology group $H^3_\nr(X,\Q/\Z(2))$. Several conjectures put together imply that this group is finite. For certain classes of threefolds, $H^3_\nr(X,\Q/\Z(2))$ actually vanishes. It is an open question whether this holds true for arbitrary threefolds. For a threefold $X$ equipped with a fibration onto a curve $C$, the generic fibre of which is a smooth projective surface $V$ over the global field $\F(C)$, the vanishing of $H^3_\nr(X,\Q/\Z(2))$ together with the Tate conjecture for divisors on $X$ implies a local-global principle of Brauer--Manin type for the Chow group of zero-cycles on $V$. This sheds a new light on work started thirty years ago. ----- Soit $X$ une vari\'et\'e projective et lisse sur un corps fini $\F$. On s'int\'eresse au groupe de cohomologie non ramifi\'ee $H^3_\nr(X,\Q/\Z(2))$. Un faisceau de conjectures implique que ce groupe est fini. Pour certaines classes de solides, on a $H^3_\nr(X,\Q/\Z(2))=0$. Savoir si c'est le cas pour tout solide est un probl\`eme ouvert. Lorsqu'un solide $X$ est fibr\'e au-dessus d'une courbe $C$, de fibre g\'en\'erique une surface projective et lisse $V$ sur le corps global $\F(C)$, la combinaison de $H^3_\nr(X,\Q/\Z(2))=0$ et de la conjecture de Tate pour $X$ a pour cons\'equence un principe local-global de type Brauer--Manin pour le groupe de Chow des z\'ero-cycles de la fibre g\'en\'erique $V$. Ceci \'eclaire d'un jour nouveau des investigations commenc\'ees il y a trente ans.
Colliot-Th'el`ene Jean-Louis
Kahn Bruno
No associations
LandOfFree
Cycles de codimension 2 et H^3 non ramifié pour les variétés sur les corps finis does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Cycles de codimension 2 et H^3 non ramifié pour les variétés sur les corps finis, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cycles de codimension 2 et H^3 non ramifié pour les variétés sur les corps finis will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-71122