Mathematics – Number Theory
Scientific paper
2009-05-08
Mathematics
Number Theory
17 pages
Scientific paper
In this article new cases of the Inverse Galois Problem are established. The main result is that for a fixed integer n, there is a positive density set of primes p such that PSL_2(F_{p^n}) occurs as the Galois group of some finite extension of the rational numbers. These groups are obtained as projective images of residual modular Galois representations. Moreover, families of modular forms are constructed such that the images of all their residual Galois representations are as large as a priori possible. Both results essentially use Khare's and Wintenberger's notion of good-dihedral primes. Particular care is taken in order to exclude nontrivial inner twists.
Dieulefait Luis
Wiese Gabor
No associations
LandOfFree
On Modular Forms and the Inverse Galois Problem does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with On Modular Forms and the Inverse Galois Problem, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and On Modular Forms and the Inverse Galois Problem will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-703965