The Wiener test for higher order elliptic equations

Mathematics – Analysis of PDEs

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

Wiener's criterion for the regularity of a boundary point with respect to the Dirichlet problem for the Laplace equation has been extended to various classes of elliptic and parabolic partial differential equations. They include linear divergence and nondivergence equations with discontinuous coefficients, equations with degenerate quadratic form, quasilinear and fully nonlinear equations, as well as equations on Riemannian manifolds, graphs, groups, and metric spaces. A common feature of these equations is that all of them are of second order, and Wiener type characterizations for higher order equations have been unknown so far. Indeed, the increase of the order results in the loss of the maximum principle, Harnack's inequality, barrier techniques, and level truncation arguments, which are ingredients in different proofs related to the Wiener test for the second order equations. In the present work we extend Wiener's result to elliptic differential operators $L(\partial)$ of order $2m$ in the Euclidean space ${\bf R}^n$ with constant real coefficients $$L(\partial)=(-1)^m\sum_{|\alpha|=|\beta|=m}a_{\alpha\beta} \partial^{\alpha+ \beta}.$$ The results can be extended to equations with variable (for example, H\"older continuous) coefficients in divergence form but we leave aside this generalization to make exposition more lucid.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

The Wiener test for higher order elliptic equations does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with The Wiener test for higher order elliptic equations, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The Wiener test for higher order elliptic equations will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-699118

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.