Astronomy and Astrophysics – Astrophysics – Solar and Stellar Astrophysics
Scientific paper
2009-12-17
Astronomy and Astrophysics
Astrophysics
Solar and Stellar Astrophysics
27 pages, 7 figures, accepted for publication in ApJ
Scientific paper
The relative importance of different initiation mechanisms for coronal mass ejections (CMEs) on the Sun is uncertain. One possible mechanism is the loss of equilibrium of coronal magnetic flux ropes formed gradually by large-scale surface motions. In this paper, the locations of flux rope ejections in a recently-developed quasi-static global evolution model are compared with observed CME source locations over a 4.5-month period in 1999. Using EUV data, the low-coronal source locations are determined unambiguously for 98 out of 330 CMEs. Despite the incomplete observations, positive correlation (with coefficient up to 0.49) is found between the distributions of observed and simulated ejections, but only when binned into periods of one month or longer. This binning timescale corresponds to the time interval at which magnetogram data are assimilated into the coronal simulations, and the correlation arises primarily from the large-scale surface magnetic field distribution; only a weak dependence is found on the magnetic helicity imparted to the emerging active regions. The simulations are limited in two main ways: they produce fewer ejections, and they do not reproduce the strong clustering of observed CME sources into active regions. Due to this clustering, the horizontal gradient of radial photospheric magnetic field is better correlated with the observed CME source distribution (coefficient 0.67). Our results suggest that, while the gradual formation of magnetic flux ropes over weeks can account for many observed CMEs, especially at higher latitudes, there exists a second class of CMEs (at least half) for which dynamic active region flux emergence on shorter timescales must be the dominant factor.
Attrill Gemma D. R.
Mackay Duncan H.
Martens Petrus C. H.
Nandy Dibyendu
van Ballegooijen Adriaan A.
No associations
LandOfFree
Comparison of a Global Magnetic Evolution Model with Observations of Coronal Mass Ejections does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Comparison of a Global Magnetic Evolution Model with Observations of Coronal Mass Ejections, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Comparison of a Global Magnetic Evolution Model with Observations of Coronal Mass Ejections will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-685569