Mathematics – Algebraic Geometry
Scientific paper
1997-12-17
Mathematics
Algebraic Geometry
Scientific paper
Let $X$ be a smooth projective variety over the complex numbers. One knows by the Cone Theorem that the closed cone of curves of $X$ is rational polyhedral whenever $c_1(X)$ is ample. For varieties $X$ such that $c_1(X)$ is not ample, however, it is in general difficult to determine the structure of $\bar NE(X)$. The purpose of this paper is to study the cone of curves of abelian varieties. Specifically, the abelian varieties $X$ are determined such that the closed cone $\bar NE(X)$ is rational polyhedral. The result can also be formulated in terms of the nef cone of $X$ or in terms of the semi-group of effective classes in the N\'eron-Severi group of $X$.
Bauer Thomas
No associations
LandOfFree
On the cone of curves of an abelian variety does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with On the cone of curves of an abelian variety, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and On the cone of curves of an abelian variety will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-677196