Numerical Methods for the Simulation of Dynamical Mass Transfer in Binaries

Astronomy and Astrophysics – Astrophysics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

34 pages, 20 eps figures, submitted to ApJS

Scientific paper

10.1086/324159

We describe computational tools that have been developed to simulate dynamical mass transfer in semi-detached, polytropic binaries that are initially executing synchronous rotation upon circular orbits. Initial equilibrium models are generated with a self-consistent field algorithm; models are then evolved in time with a parallel, explicit, Eulerian hydrodynamics code with no assumptions made about the symmetry of the system. Poisson's equation is solved along with the equations of ideal fluid mechanics to allow us to treat the nonlinear tidal distortion of the components in a fully self-consistent manner. We present results from several standard numerical experiments that have been conducted to assess the general viability and validity of our tools, and from benchmark simulations that follow the evolution of two detached systems through five full orbits (up to approximately 90 stellar dynamical times). These benchmark runs allow us to gauge the level of quantitative accuracy with which simulations of semi-detached systems can be performed using presently available computing resources. We find that we should be able to resolve mass transfer at levels $\dot{M} / M > few x 10^-5$ per orbit through approximately 20 orbits with each orbit taking about 30 hours of computing time on parallel computing platforms.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Numerical Methods for the Simulation of Dynamical Mass Transfer in Binaries does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Numerical Methods for the Simulation of Dynamical Mass Transfer in Binaries, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Numerical Methods for the Simulation of Dynamical Mass Transfer in Binaries will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-641989

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.