Mathematics – Geometric Topology
Scientific paper
2009-11-25
Trans. Am. Math. Soc., 364 (2012), No. 3, 1427-1487
Mathematics
Geometric Topology
56 pages; a mistake in section 6 corrected; accepted for publication in Trans. Am. Math. Soc
Scientific paper
Let (G) be a connected compact non-abelian Lie-group and (T) a maximal torus of (G). A torus manifold with (G)-action is defined to be a smooth connected closed oriented manifold of dimension (2\dim T) with an almost effective action of (G) such that (M^T\neq \emptyset). We show that if there is a torus manifold (M) with (G)-action then the action of a finite covering group of (G) factors through (\tilde{G}=\prod SU(l_i+1)\times\prod SO(2l_i+1)\times \prod SO(2l_i)\times T^{l_0}). The action of (\tilde{G}) on (M) restricts to an action of (\tilde{G}'=\prod SU(l_i+1)\times\prod SO(2l_i+1)\times \prod U(l_i)\times T^{l_0}) which has the same orbits as the (\tilde{G})-action. We define invariants of torus manifolds with (G)-action which determine their (\tilde{G}')-equivariant diffeomorphism type. We call these invariants admissible 5-tuples. A simply connected torus manifold with (G)-action is determined by its admissible 5-tuple up to (\tilde{G})-equivariant diffeomorphism. Furthermore we prove that all admissible 5-tuples may be realised by torus manifolds with (\tilde{G}")-action where (\tilde{G}") is a finite covering group of (\tilde{G}').
No associations
LandOfFree
Torus manifolds with non-abelian symmetries does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Torus manifolds with non-abelian symmetries, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Torus manifolds with non-abelian symmetries will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-624347