Astronomy and Astrophysics – Astrophysics
Scientific paper
1998-11-16
Int.J.Mod.Phys. D10 (2001) 89-106
Astronomy and Astrophysics
Astrophysics
18 pages, latex, eight EPS figures not included, available under request, REVTEX format
Scientific paper
10.1142/S0218271801000883
The chemical evolution of nascent quark matter core in a newborn compact neutron star is studied in presence of a strong magnetic field. The effective rate of strange quark production in degenerate quark matter core in presence of strong magnetic fields is obtained. The investigations show that in presence of strong magnetic fields a quark matter core becomes energetically unstable and hence a deconfinement transition to quark matter at the centre of a compact neutron star under such circumstances is not possible. The critical strength of magnetic field at the central core to make the system energetically unstable with respect to dense nuclear matter is found to be $\sim 4.4\times 10^{13}$G. This is the typical strength at which the Landau levels for electrons are populated. The other possible phase transitions at such high density and ultra strong magnetic field environment are discussed.
Chakrabarty Somenath
Ghosh Tanusri
No associations
LandOfFree
Chemical Evolution of Strongly Magnetized Quark Core in a Newborn Neutron Star does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Chemical Evolution of Strongly Magnetized Quark Core in a Newborn Neutron Star, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Chemical Evolution of Strongly Magnetized Quark Core in a Newborn Neutron Star will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-615228