Astronomy and Astrophysics – Astrophysics – High Energy Astrophysical Phenomena
Scientific paper
2009-09-30
Astronomy and Astrophysics
Astrophysics
High Energy Astrophysical Phenomena
13 pages, 5 figures, accepted by MNRAS
Scientific paper
We investigate the dynamical structure of advective accretion flow around stationary as well as rotating black holes. For a suitable choice of input parameters, such as, accretion rate ($\dot {\cal M}$) and angular momentum ($\lambda$), global accretion solution may include a shock wave. The post shock flow is located at few tens of Schwarzchild radius and it is generally very hot and dense. This successfully mimics the so called Compton cloud which is believed to be responsible for emitting hard radiations. Due to the radiative loss, a significant energy from the accreting matter is removed and the shock moves forward towards the black hole in order to maintain the pressure balance across it. We identify the effective area of the parameter space ($\dot {\cal M} - \lambda$) which allows accretion flows to have some energy dissipation at the shock $(\Delta {\cal E})$. As the dissipation is increased, the parameter space is reduced and finally disappears when the dissipation is reached its critical value. The dissipation has a profound effect on the dynamics of post-shock flow. By moving forward, an unstable shock whose oscillation causes Quasi-Periodic Oscillations (QPOs) in the emitted radiation, will produce oscillations of high frequency. Such an evolution of QPOs has been observed in several black hole candidates during their outbursts.
Chakrabarti Sandip K.
Das Santabrata
Mondal Soumen
No associations
LandOfFree
Studies of dissipative standing shock waves around black holes does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Studies of dissipative standing shock waves around black holes, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Studies of dissipative standing shock waves around black holes will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-589210