Mathematics – Representation Theory
Scientific paper
2007-05-26
Mathematics
Representation Theory
Scientific paper
Let R be a ring (associative, with 1). A non-zero module M is said to be a
Pruefer module provided there exists a surjective, locally nilpotent
endomorphism with kernel of finite length. The aim of this note is construct
Pruefer modules starting from a pair of module homomorphisms w,v: U_0 -> U_1,
where w is injective and its cokernel is of finite length.
No associations
LandOfFree
The Ladder Construction of Pruefer Modules does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with The Ladder Construction of Pruefer Modules, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The Ladder Construction of Pruefer Modules will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-582671