Planet-disk interaction in highly inclined systems

Astronomy and Astrophysics – Astrophysics – Earth and Planetary Astrophysics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

6 pages, 4 figures, accepted for publication in MNRAS

Scientific paper

10.1111/j.1365-2966.2012.20869.x

We study the interaction of a proto-planetary disk and a planet on a highly inclined orbit in the linear regime. The evolution of the planet is dominated by dynamical friction for planet masses above several Earth-masses. Smaller planets are dominated by aerodynamic drag, especially for very high inclinations and retrograde orbits. The time-scales associated with migration and inclination damping are calculated. For certain values of the inclination, the inclination damping time-scale is longer than the migration time-scale and the disk lifetime. This result shows that highly inclined planets can not (re-)align with the proto-planetary disk. We discuss the dependence of numerical simulations on the gravitational softening parameter. We find only a logarithmic dependence, making global three dimensional simulations of this process computationally feasible. A large fraction of Hot Jupiters is on highly inclined orbits with respect to the rotation axis of the star. On the other hand small-mass planetary systems discovered by the Kepler mission have low mutual inclinations. This shows that there are two distinct formation mechanisms at work. The process that creates inclined Hot Jupiters does not operate on small mass planets because the damping timescales are so long that these systems would still be inclined today.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Planet-disk interaction in highly inclined systems does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Planet-disk interaction in highly inclined systems, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Planet-disk interaction in highly inclined systems will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-580824

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.