Trapping of dust by coherent vortices in the solar nebula

Astronomy and Astrophysics – Astrophysics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

54 pages, 14 figures. Submitted to A&A

Scientific paper

We develop the idea proposed by Barge & Sommeria (1995) and Tanga et al. (1996) that large-scale vortices present in the solar nebula can concentrate dust particles and facilitate the formation of planetesimals and planets. We introduce an exact vortex solution of the incompressible 2D Euler equation and study the motion of dust particles in that vortex. In particular, we derive analytical expressions for the capture time and the mass capture rate as a function of the friction parameter. Then, we study how small-scale turbulent fluctuations affect the motion of the particles in the vortex and determine their rate of escape by solving a problem of quantum mechanics. We apply these results to the solar nebula and find that the capture is optimum near Jupiter's orbit (as noticed already by Barge & Sommeria 1995) but also in the Earth region. This second optimum corresponds to the transition between the Epstein and the Stokes regime which takes place, for relevant particles, at the separation between telluric and giant planets (i.e near the asteroid belt). At these locations, the particles are efficiently captured and concentrated by the vortices and can undergo gravitational collapse to form the planetesimals.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Trapping of dust by coherent vortices in the solar nebula does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Trapping of dust by coherent vortices in the solar nebula, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Trapping of dust by coherent vortices in the solar nebula will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-573414

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.