The Einstein-Maxwell-Particle System in the York Canonical Basis of ADM Tetrad Gravity: III) The Post-Minkowskian N-Body Problem, its Post-Newtonian Limit in Non-Harmonic 3-Orthogonal Gauges and Dark Matter as an Inertial Effect

Astronomy and Astrophysics – Astrophysics – General Relativity and Quantum Cosmology

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

86 pages. Deep revision of the second part of the paper with the addition of the center-of-mass problem in GR, with a refined

Scientific paper

We conclude the study of the Post-Minkowskian linearization of ADM tetrad gravity in the York canonical basis for asymptotically Minkowskian space-times in the family of non-harmonic 3-orthogonal gauges parametrized by the York time ${}^3K(\tau, \vec \sigma)$ (the inertial gauge variable, not existing in Newton gravity, describing the general relativistic remnant of the freedom in clock synchronization in the definition of the instantaneous 3-spaces). As matter we consider only N scalar point particles with a Grassmann regularization of the self-energies and with a ultraviolet cutoff making possible the PM linearization and the evaluation of the PM solution for the gravitational field. We study in detail all the properties of these PM space-times emphasizing their dependence on the gauge variable ${}^3{\cal K}_{(1)} = {1\over {\triangle}}\, {}^3K_{(1)}$ (the non-local York time): Riemann and Weyl tensors, 3-spaces, time-like and null geodesics, red-shift and luminosity distance. Then we study the Post-Newtonian (PN) expansion of the PM equations of motion of the particles. We find that in the two-body case at the 0.5PN order there is a damping (or anti-damping) term depending only on ${}^3{\cal K}_{(1)}$. This open the possibility to explain dark matter in Einstein theory as a relativistic inertial effect: the determination of ${}^3{\cal K}_{(1)}$ from the masses and rotation curves of galaxies would give information on how to find a PM extension of the existing PN Celestial frame (ICRS) used as observational convention in the 4-dimensional description of stars and galaxies. Dark matter would describe the difference between the inertial and gravitational masses seen in the non-Euclidean 3-spaces, without a violation of their equality in the 4-dimensional space-time as required by the equivalence principle.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

The Einstein-Maxwell-Particle System in the York Canonical Basis of ADM Tetrad Gravity: III) The Post-Minkowskian N-Body Problem, its Post-Newtonian Limit in Non-Harmonic 3-Orthogonal Gauges and Dark Matter as an Inertial Effect does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with The Einstein-Maxwell-Particle System in the York Canonical Basis of ADM Tetrad Gravity: III) The Post-Minkowskian N-Body Problem, its Post-Newtonian Limit in Non-Harmonic 3-Orthogonal Gauges and Dark Matter as an Inertial Effect, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The Einstein-Maxwell-Particle System in the York Canonical Basis of ADM Tetrad Gravity: III) The Post-Minkowskian N-Body Problem, its Post-Newtonian Limit in Non-Harmonic 3-Orthogonal Gauges and Dark Matter as an Inertial Effect will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-559230

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.