Towards Optimal Measurement of Power Spectra I: Minimum Variance Pair Weighting and the Fisher Matrix

Astronomy and Astrophysics – Astrophysics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

11 pages, no figures. Submitted to MNRAS

Scientific paper

This is the first of a pair of papers which address the problem of measuring the unredshifted power spectrum in optimal fashion from a survey of galaxies, with arbitrary geometry, for Gaussian or non-Gaussian fluctuations, in real or redshift space. In this first paper, that pair weighting is derived which formally minimizes the expected variance of the unredshifted power spectrum windowed over some arbitrary kernel. The inverse of the covariance matrix of minimum variance estimators of windowed power spectra is the Fisher information matrix, which plays a central role in establishing optimal estimators. Actually computing the minimum variance pair window and the Fisher matrix in a real survey still presents a formidable numerical problem, so here a perturbation series solution is developed. The properties of the Fisher matrix evaluated according to the approximate method suggested here are investigated in more detail in the second paper.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Towards Optimal Measurement of Power Spectra I: Minimum Variance Pair Weighting and the Fisher Matrix does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Towards Optimal Measurement of Power Spectra I: Minimum Variance Pair Weighting and the Fisher Matrix, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Towards Optimal Measurement of Power Spectra I: Minimum Variance Pair Weighting and the Fisher Matrix will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-553846

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.