Secondary Infall: Theory {\it Versus} Simulations

Astronomy and Astrophysics – Astrophysics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

21 pages, 1 table, TeX file, figures provided upon request, accepted for publication in ApJ, CfPA-95-TH-25

Scientific paper

10.1086/176710

The applicability of the highly idealized secondary infall model to `realistic' initial conditions is investigated. The collapse of proto-halos seeded by $3\sigma$ density perturbations to an Einstein--de Sitter universe is studied here for a variety of scale-free power spectra with spectral indices ranging from $n=1$ to $-2$. Initial conditions are set by the constrained realization algorithm and the dynamical evolution is calculated both analytically and numerically. The analytic calculation is based on the simple secondary infall model where spherical symmetry is assumed. A full numerical simulation is performed by a Tree N-body code where no symmetry is assumed. A hybrid calculation has been performed by using a monopole term code, where no symmetry is imposed on the particles but the force is approximated by the monopole term only. The main purpose of using such code is to suppress off-center mergers. In all cases studied here the rotation curves calculated by the two numerical codes are in agreement over most of the mass of the halos, excluding the very inner region, and these are compared with the analytically calculated ones. The main result obtained here, reinforces the foundings of many N-body experements, is that the collapse proceeds 'gently' and not {\it via} violent relaxation. There is a strong correlation of the final energy of individual particles with the initial one. In particular we find a preservation of the ranking of particles according to their binding energy. In cases where the analytic model predicts non-increasing rotation curves its predictions are confirmed by the simulations. Otherwise, sensitive dependence on initial conditions is found and the analytic model fails completely.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Secondary Infall: Theory {\it Versus} Simulations does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Secondary Infall: Theory {\it Versus} Simulations, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Secondary Infall: Theory {\it Versus} Simulations will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-538217

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.