Triaxial Haloes and Particle Dark Matter Detection

Astronomy and Astrophysics – Astrophysics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

In press, Monthly Notices

Scientific paper

10.1046/j.1365-8711.2000.03787.x

This paper presents the properties of a family of scale-free triaxial haloes. We adduce arguments to suggest that the velocity ellipsoids of such models are aligned in conical coordinates. We provide an algorithm to find the set of conically aligned velocity second moments that support a given density against the gravity field of the halo. The case of the logarithmic ellipsoidal model -- the simplest triaxial generalisation of the familiar isothermal sphere -- is examined in detail. The velocity dispersions required to hold up the self-consistent model are analytic. The velocity distribution of the dark matter can be approximated as a triaxial Gaussian with semiaxes equal to the velocity dispersions. There are roughly twenty experiments worldwide that are searching for evidence of scarce interactions between weakly-interacting massive-particle dark matter (WIMPs) and detector nuclei. The annual modulation signal, caused by the Earth's rotation around the Sun, is a crucial discriminant between WIMP events and the background. The greatest rate is in June, the least in December. We compute the differential detection rate for energy deposited by the rare WIMP-nucleus interactions in our logarithmic ellipsoidal halo models. Triaxiality and velocity anisotropy change the total rate by up to 40 %, and have a substantial effect on the amplitude of the annual modulation signal. The overall rate is greatest, but the amplitude of the modulation is weakest, in our radially anisotropic halo models. Even the sign of the signal can be changed. Restricting attention to low energy events, the models predict that the maximum rate occurs in December, and not in June.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Triaxial Haloes and Particle Dark Matter Detection does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Triaxial Haloes and Particle Dark Matter Detection, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Triaxial Haloes and Particle Dark Matter Detection will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-535931

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.