Astronomy and Astrophysics – Astrophysics – High Energy Astrophysical Phenomena
Scientific paper
2009-07-29
Astronomy and Astrophysics
Astrophysics
High Energy Astrophysical Phenomena
Accepted for publication in MNRAS
Scientific paper
We model the overall shape of an accretion disc in a semi-detached binary system in which mass is transfered on to a spinning black hole the spin axis of which is misaligned with the orbital rotation axis. We assume the disc is in a steady state. Its outer regions are subject to differential precession caused by tidal torques of the companion star. These tend to align the outer parts of the disc with the orbital plane. Its inner regions are subject to differential precession caused by the Lense-Thirring effect. These tend to align the inner parts of the disc with the spin of the black hole. We give full numerical solutions for the shape of the disc for some particular disc parameters. We then show how an analytic approximation to these solutions can be obtained for the case when the disc surface density varies as a power law with radius. These analytic solutions for the shape of the disc are reasonably accurate even for large misalignments and can be simply applied for general disc parameters. They are particularly useful when the numerical solutions would be slow.
Martin Rebecca G.
Pringle James E.
Tout Christopher A.
No associations
LandOfFree
The Shape of an Accretion Disc in a Misaligned Black Hole Binary does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with The Shape of an Accretion Disc in a Misaligned Black Hole Binary, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The Shape of an Accretion Disc in a Misaligned Black Hole Binary will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-521735