Symmetric crystals and affine Hecke algebras of type B

Mathematics – Representation Theory

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Announcement paper, 9 pages

Scientific paper

The Lascoux-Leclerc-Thibon conjecture, reformulated and solved by S. Ariki, asserts that the K-group of the representations of the affine Hecke algebras of type A is isomorphic to the algebra of functions on the maximal unipotent subgroup of the group associated with the Lie algebra $gl_\infty$ or the affine Lie algebra $A^{(1)}_\ell$, and the irreducible representations correspond to the upper global bases. In this note, we formulate analogous conjectures for certain classes of irreducible representations of affine Hecke algebras of type B. We corrected typos.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Symmetric crystals and affine Hecke algebras of type B does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Symmetric crystals and affine Hecke algebras of type B, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Symmetric crystals and affine Hecke algebras of type B will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-50812

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.