Mathematics – Geometric Topology
Scientific paper
2006-06-08
Mathematics
Geometric Topology
13 pages
Scientific paper
We prove that every spherical football (also known as a spherical soccer ball) is a branched cover, branched only in the vertices, of the standard football made up of 12 pentagons and 20 hexagons. We also give examples showing that the corresponding result is not true for footballs of higher genera. Moreover, we classify the possible pairs (k,l) for which football patterns on the sphere exist satisfying a natural generalisation of the usual incidence relation between pentagons and hexagons to k-gons and l-gons.
Braungart V.
Kotschick D.
No associations
LandOfFree
The classification of football patterns does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with The classification of football patterns, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The classification of football patterns will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-507406