Astronomy and Astrophysics – Astrophysics
Scientific paper
2008-09-29
Astronomy and Astrophysics
Astrophysics
11 pages, 11 figures, accepted for publication in A&A
Scientific paper
10.1051/0004-6361:200809850
Mid-infrared spectroscopy of dense illuminated ridges (or photodissociation regions, PDRs) suggests dust evolution. Such evolution must be reflected in the gas physical properties through processes like photo-electric heating or H_2 formation. With Spitzer Infrared Spectrograph (IRS) and ISOCAM data, we study the mid-IR emission of closeby, well known PDRs. Focusing on the band and continuum dust emissions, we follow their relative contributions and analyze their variations in terms of abundance of dust populations. In order to disentangle dust evolution and excitation effects, we use a dust emission model that we couple to radiative transfer. Our dust model reproduces extinction and emission of the standard interstellar medium that we represent with diffuse high galactic latitude clouds called Cirrus. We take the properties of dust in Cirrus as a reference to which we compare the dust emission from more excited regions, namely the Horsehead and the reflection nebula NGC 2023 North. We show that in both regions, radiative transfer effects cannot account for the observed spectral variations. We interpret these variations in term of changes of the relative abundance between polycyclic aromatic hydrocarbons (PAHs, mid-IR band carriers) and very small grains (VSGs, mid-IR continuum carriers). We conclude that the PAH/VSG abundance ratio is 2.4 times smaller at the peak emission of the Horsehead nebula than in the Cirrus case. For NGC2023 North where spectral evolution is observed across the northern PDR, we conclude that this ratio is ~5 times lower in the dense, cold zones of the PDR than in its diffuse illuminated part where dust properties seem to be the same as in Cirrus. We conclude that dust in PDRs seems to evolve from "dense" to "diffuse" properties at the small spatial scale of the dense illuminated ridge.
Abergel Alain
Compiegne Mathieu
Habart Emilie
Verstraete Laurent
No associations
LandOfFree
Dust processing in photodissociation regions - Mid-IR emission modelling does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Dust processing in photodissociation regions - Mid-IR emission modelling, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Dust processing in photodissociation regions - Mid-IR emission modelling will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-49727