Astronomy and Astrophysics – Astrophysics
Scientific paper
2006-11-14
Astronomy and Astrophysics
Astrophysics
12 pages, 11 figures, accepted for publication by A&A
Scientific paper
10.1051/0004-6361:20066486
We develop a model for the wind properties of cool main-sequence stars, which comprises their wind ram pressures, mass fluxes, and terminal wind velocities. The wind properties are determined through a polytropic magnetised wind model, assuming power laws for the dependence of the thermal and magnetic wind parameters on the stellar rotation rate. We use empirical data to constrain theoretical wind scenarios, which are characterised by different rates of increase of the wind temperature, wind density, and magnetic field strength. Scenarios based on moderate rates of increase yield wind ram pressures in agreement with most empirical constraints, but cannot account for some moderately rotating targets, whose high apparent mass loss rates are inconsistent with observed coronal X-ray and magnetic properties. For fast magnetic rotators, the magneto-centrifugal driving of the outflow can produce terminal wind velocities far in excess of the surface escape velocity. Disregarding this aspect in the analyses of wind ram pressures leads to overestimations of stellar mass loss rates. The predicted mass loss rates of cool main-sequence stars do not exceed about ten times the solar value. Our results are in contrast with previous investigations, which found a strong increase of the stellar mass loss rates with the coronal X-ray flux. Owing to the weaker dependence, we expect the impact of stellar winds on planetary atmospheres to be less severe and the detectability of magnetospheric radio emission to be lower then previously suggested. Considering the rotational evolution of a one solar-mass star, the mass loss rates and the wind ram pressures are highest during the pre-main sequence phase.
Holzwarth Volkmar
Jardine Moira M.
No associations
LandOfFree
Theoretical mass loss rates of cool main-sequence stars does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Theoretical mass loss rates of cool main-sequence stars, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Theoretical mass loss rates of cool main-sequence stars will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-487493