Local hydrodynamics and operator stability of Keplerian accretion disks

Astronomy and Astrophysics – Astrophysics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Old (October 2000) manuscript submitted to ApJL. See discussion in postscript. Posted for archival purposes only

Scientific paper

We discuss non-self-gravitating hydrodynamic disks in the thin disk limit. These systems are stable according to the Rayleigh criterion, and yet there is some evidence that the dissipative and transport processes in these disks are hydrodynamic in nature at least some of the time. We draw on recent work on the hydrodynamics of laboratory shear flows. Such flows are often experimentally unstable even in the absence of a linear instability. The transition to turbulence in these systems, as well as the large linear transient amplification of initial disturbances, may depend upon the non-self-adjoint nature of the differential operator that describes the dynamics of perturbations to the background state. We find that small initial perturbations can produce large growth in accretion disks in the shearing sheet approximation with shearing box boundary conditions, despite the absence of any linear instability. Furthermore, the differential operator that propagates initial conditions forward in time is asymptotically close (as a function of Reynolds number) to possessing growing eigenmodes. The similarity to the dynamics of laboratory shear flows is suggestive that accretion disks might be hydrodynamically unstable despite the lack of any known instability mechanism.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Local hydrodynamics and operator stability of Keplerian accretion disks does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Local hydrodynamics and operator stability of Keplerian accretion disks, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Local hydrodynamics and operator stability of Keplerian accretion disks will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-481176

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.