Stability of accretion discs threaded by a strong magnetic field

Astronomy and Astrophysics – Astrophysics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

MNRAS in press. 9 postscript figures included in text, 4 jpeg images included separately

Scientific paper

We study the stability of poloidal magnetic fields anchored in a thin accretion disc. The two-dimensional hydrodynamics in the disc plane is followed by a grid-based numerical simulation including the vertically integrated magnetic forces. The 3--dimensional magnetic field outside the disc is calculated in a potential field approximation from the magnetic flux density distribution in the disc. For uniformly rotating discs we confirm numerically the existence of the interchange instability as predicted by Spruit, Stehle & Papaloizou (1995). In agreement with predictions from the shearing sheet model, discs with Keplerian rotation are found to be stabilized by the shear, as long as the contribution of magnetic forces to support against gravity is small. When this support becomes significant, we find a global instability which transports angular momentum outward and allows mass to accrete inward. The instability takes the form of a $m=1$ rotating `crescent', reminiscent of the purely hydrodynamic nonlinear instability previously found in pressure-supported discs. A model where the initial surface mass density $\Sigma(r)$ and $B_{\mathrm{z}}(r)$ decrease with radius as power laws shows transient mass accretion during about 6 orbital periods, and settles into a state with surface density and field strength decreasing approximately exponentially with radius. We argue that this instability is likely to be the main angular momentum transport mechanism in discs with a poloidal magnetic field sufficiently strong to suppress magnetic turbulence. It may be especially relevant in jet-producing discs.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Stability of accretion discs threaded by a strong magnetic field does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Stability of accretion discs threaded by a strong magnetic field, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Stability of accretion discs threaded by a strong magnetic field will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-46687

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.