Loss of halo triaxiality due to bar formation

Astronomy and Astrophysics – Astrophysics – Cosmology and Extragalactic Astrophysics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

20 pages, 26 figures, accepted for publication in MNRAS

Scientific paper

Cosmological N-body simulations indicate that the dark matter haloes of galaxies should be generally triaxial. Yet, the presence of a baryonic disc is believed to alter the shape of the haloes. Here we aim to study how bar formation is affected by halo triaxiality and how, in turn, the presence of the bar influences the shape of the halo. We perform a set of collisionless N-body simulations of disc galaxies with triaxial dark matter haloes, using elliptical discs as initial conditions. We study models of different halo triaxialities and, to investigate the behaviour of the halo shape in the absence of bar formation, we run models with different disc masses, halo concentrations, disc velocity dispersions and also models where the disc shape is kept artificially axisymmetric. We find that the introduction of a massive disc causes the halo triaxiality to be partially diluted. Once the disc is fully grown, a strong stellar bar develops within the halo that is still non-axisymmetric, causing it to lose its remaining non-axisymmetry. In triaxial haloes in which the initial conditions are such that a bar does not form, the halo is able to remain triaxial and the circularisation of its shape on the plane of the disc is limited to the period of disc growth. We conclude that part of the circularisation of the halo is due to disc growth, but part must be attributed to the formation of a bar. We find that initially circular discs respond excessively to the triaxial potential and become highly elongated. They also lose more angular momentum than the initially elliptical discs and thus form stronger bars. Because of that, the circularisation that their bars induce on their haloes is also more rapid. We also analyse halo vertical shapes and observe that their vertical flattenings remain considerable, meaning that the haloes become approximately oblate by the end of the simulations. [abridged]

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Loss of halo triaxiality due to bar formation does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Loss of halo triaxiality due to bar formation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Loss of halo triaxiality due to bar formation will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-459042

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.