Astronomy and Astrophysics – Astrophysics
Scientific paper
2006-06-12
Astrophys.J.654:304-315,2006
Astronomy and Astrophysics
Astrophysics
Accepted for publication in ApJ. 14 pages, 5 figures, emulateapj format. This version has a more thorough error analysis and a
Scientific paper
10.1086/509101
It has been known for more than 30 years that star formation in giant molecular clouds (GMCs) is slow, in the sense that only ~1% of the gas forms stars every free-fall time. This result is entirely independent of any particular model of molecular cloud lifetime or evolution. Here we survey observational data on higher density objects in the interstellar medium, including infrared dark clouds and dense molecular clumps, to determine if these objects form stars slowly like GMCs, or rapidly, converting a significant fraction of their mass into stars in one free-fall time. We find no evidence for a transition from slow to rapid star formation in structures covering three orders of magnitude in density. This has important implications for models of star formation, since competing models make differing predictions for the characteristic density at which star formation should transition from slow to rapid. The data are inconsistent with models that predict that star clusters form rapidly and in free-fall collapse. Magnetic- and turbulence-regulated star formation models can reproduce the observations qualitatively, and the turbulence-regulated star formation model of Krumholz & McKee quantitatively reproduces the infrared-HCN luminosity correlation recently reported by Gao & Solomon. Slow star formation also implies that the process of star cluster formation cannot be one of global collapse, but must instead proceed over many free-fall times. This suggests that turbulence in star-forming clumps must be driven, and that the competitive accretion mechanism does not operate in typical cluster-forming molecular clumps.
Krumholz Mark R.
Tan Jonathan C.
No associations
LandOfFree
Slow Star Formation in Dense Gas: Evidence and Implications does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Slow Star Formation in Dense Gas: Evidence and Implications, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Slow Star Formation in Dense Gas: Evidence and Implications will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-45139