Astronomy and Astrophysics – Astrophysics – General Relativity and Quantum Cosmology
Scientific paper
2010-07-28
Phys.Rev.D82:124025,2010
Astronomy and Astrophysics
Astrophysics
General Relativity and Quantum Cosmology
ver 2: minor clarifications added; reformatted with Sections; 11 pages
Scientific paper
10.1103/PhysRevD.82.124025
The calculation of entanglement entropy S of quantum fields in spacetimes with horizon shows that, quite generically, S (a) is proportional to the area A of the horizon and (b) is divergent. I argue that this divergence, which arises even in the case of Rindler horizon in flat spacetime, is yet another indication of a deep connection between horizon thermodynamics and gravitational dynamics. In an emergent perspective of gravity, which accommodates this connection, the fluctuations around the equipartition value in the area elements will lead to a minimal quantum of area, of the order of L_P^2, which will act as a regulator for this divergence. In a particular prescription for incorporating L_P^2 as zero-point-area of spacetime, this does happen and the divergence in entanglement entropy is regularized, leading to S proportional to (A/L_P^2) in Einstein gravity. In more general models of gravity, the surface density of microscopic degrees of freedom is different which leads to a modified regularisation procedure and the possibility that the entanglement entropy - when appropriately regularised - matches the Wald entropy.
No associations
LandOfFree
Finite entanglement entropy from the zero-point-area of spacetime does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Finite entanglement entropy from the zero-point-area of spacetime, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Finite entanglement entropy from the zero-point-area of spacetime will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-450381