Astronomy and Astrophysics – Astrophysics
Scientific paper
2000-12-09
Proceedings of the Ninth Marcel Grossmann Meeting on General Relativity, edited by R.T. Jantzen, V. Gurzadyan and R. Ruffini,
Astronomy and Astrophysics
Astrophysics
9 pages, 4 figures. submitted to Proceedings of the 9th Marcel Grossmann meeting
Scientific paper
The SZ effect from clusters of galaxies is a dominant source of secondary CMB anisotropy in the low-redshift universe. We present analytic predictions for the CMB power spectrum from massive halos arising from the SZ effect. Since halos are discrete, the power spectrum consists of a Poisson and a correlation term. The latter is always smaller than the former, which is dominated by nearby bright rich clusters. In practice however, those bright clusters are easy to indentify and can thus be subtracted from the map. After this subtraction, the correlation term dominates degree-scale fluctuations over the Poisson term, as the main contribution to the correlation term comes from distant clusters. We find that the correlation term is detectable by Planck experiment. Since the degree scale spectrum is quite insensitive to the highly uncertain core structures of halos, our predictions are robust on these scales. Measuring the correlation term on degree scales thus cleanly probes the clustering of distant halos. This has not been measured yet, mainly because optical and X-ray surveys are not sufficiently sensitive to include such distant clusters and groups. Our analytic predictions are also compared to adiabatic hydrodynamic simulations. The agreement is remarkably good, down to ten arcminutes scales, indicating that our predictions are robust for the Planck experiment. Below ten arcminute scales, where the details of the core structure dominates the power spectrum, our analytic and simulated predictions might fail. In the near future, interferometer and bolometer array experiments will measure the SZ power spectrum down to arcminutes scales, and yield new insight into the physics of the intrahalo medium.
Kitayama Tetsu
Komatsu Eiichiro
Pen U.-L.
Refregier Alexandre
Spergel David N.
No associations
LandOfFree
CMB anisotropy from spatial correlations of clusters of galaxies does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with CMB anisotropy from spatial correlations of clusters of galaxies, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and CMB anisotropy from spatial correlations of clusters of galaxies will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-432415