Astronomy and Astrophysics – Astrophysics
Scientific paper
2001-01-16
Mon.Not.Roy.Astron.Soc. 324 (2001) 705
Astronomy and Astrophysics
Astrophysics
MNRAS, in press
Scientific paper
10.1046/j.1365-8711.2001.04356.x
We study protoplanetary disc evolution assuming that angular momentum transport is driven by gravitational instability at large radii, and magnetohydrodynamic (MHD) turbulence in the hot inner regions. At radii of the order of 1 AU such discs develop a magnetically layered structure, with accretion occurring in an ionized surface layer overlying quiescent gas that is too cool to sustain MHD turbulence. We show that layered discs are subject to a limit cycle instability, in which accretion onto the protostar occurs in bursts with an accretion rate of 10^{-5} solar masses / yr, separated by quiescent intervals where the accretion rate is 10^{-8} solar masses / yr. Such bursts could lead to repeated episodes of strong mass outflow in Young Stellar Objects. The transition to this episodic mode of accretion occurs at an early epoch (t < 1 Myr), and the model therefore predicts that many young pre-main-sequence stars should have low rates of accretion through the inner disc. At ages of a few Myr, the discs are up to an order of magnitude more massive than the minimum mass solar nebula, with most of the mass locked up in the quiescent layer of the disc at around 1 AU. The predicted rate of low mass planetary migration is reduced at the outer edge of the layered disc, which could lead to an enhanced probability of giant planet formation at radii of 1-3 AU.
Armitage Philip J.
Livio Mario
Pringle James E.
No associations
LandOfFree
Episodic accretion in magnetically layered protoplanetary discs does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Episodic accretion in magnetically layered protoplanetary discs, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Episodic accretion in magnetically layered protoplanetary discs will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-426249