The Early Evolution of Primordial Pair-Instability Supernovae

Astronomy and Astrophysics – Astrophysics – Cosmology and Extragalactic Astrophysics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

submitted to ApJ, comments welcome

Scientific paper

The observational signatures of the first cosmic explosions and their chemical imprint on second-generation stars both crucially depend on how heavy elements mix within the star at the earliest stages of the blast. We present numerical simulations of the early evolution of Population III pair-instability supernovae with the new adaptive mesh refinement code CASTRO. In stark contrast to 15 - 40 Msun core-collapse primordial supernovae, we find no mixing in most 150 - 250 Msun pair-instability supernovae out to times well after breakout from the surface of the star. This may be the key to determining the mass of the progenitor of a primeval supernova, because vigorous mixing will cause emission lines from heavy metals such as Fe and Ni to appear much sooner in the light curves of core-collapse supernovae than in those of pair-instability explosions. Our results also imply that unlike low-mass Pop III supernovae, whose collective metal yields can be directly compared to the chemical abundances of extremely metal-poor stars, further detailed numerical simulations will be required to determine the nucleosynthetic imprint of very massive Pop III stars on their direct descendants.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

The Early Evolution of Primordial Pair-Instability Supernovae does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with The Early Evolution of Primordial Pair-Instability Supernovae, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The Early Evolution of Primordial Pair-Instability Supernovae will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-422845

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.