On the structure theory of the Iwasawa algebra of a p-adic Lie group

Mathematics – Number Theory

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

This paper is lead by the question whether there is a nice structure theory of finitely generated modules over the Iwasawa algebra, i.e. the completed group algebra, R of a p-adic analytic group G. For G without any p-torsion element we prove that R is an Auslander regular ring. This result enables us to give a good definition for pseudo-null R-modules. Then the category of R-modules up to pseudo-isomorphisms is studied and we obtain a weak structure theorem for the p-primary part of a finitely generated R-module. A local duality theorem as well as the Auslander-Buchsbaum equality are further main issues. The arithmetic applications to the Iwasawa theory of abelian varieties are published elsewhere.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

On the structure theory of the Iwasawa algebra of a p-adic Lie group does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with On the structure theory of the Iwasawa algebra of a p-adic Lie group, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and On the structure theory of the Iwasawa algebra of a p-adic Lie group will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-419558

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.