Mathematics – Differential Geometry
Scientific paper
2002-11-17
Mathematics
Differential Geometry
25 pages, no figures
Scientific paper
We show that the analog of Hamilton's Ricci flow in the combinatorial setting
produces solutions which converge exponentially fast to Thurston's circle
packing on surfaces. As a consequence, a new proof of Thurston's existence of
circle packing theorem is obtained. As another consequence, Ricci flow suggests
a new algorithm to find circle packings.
Chow Bennett
Luo Feng
No associations
LandOfFree
Combinatorial Ricci Flows on Surfaces does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Combinatorial Ricci Flows on Surfaces, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Combinatorial Ricci Flows on Surfaces will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-403601