Mathematics – Quantum Algebra
Scientific paper
2002-04-09
Mathematics
Quantum Algebra
24 pages, LaTeX
Scientific paper
10.1088/0305-4470/35/27/313
The quantization properties of composite peripheric twists are studied. Peripheric chains of extended twists are constructed for U(sl(N)) in order to obtain composite twists with sufficiently large carrier subalgebras. It is proved that the peripheric chains can be enlarged with additional Reshetikhin and Jordanian factors. This provides the possibility to construct new solutions to Drinfeld equations and, thus, to quantize new sets of Lie-Poisson structures. When the Jordanian additional factors are used the carrier algebras of the enlarged peripheric chains are transformed into algebras of motion of the form G_{JB}^{P}={G}_{H}\vdash {G}_{P}. The factor algebra G_{H} is a direct sum of Borel and contracted Borel subalgebras of lower dimensions. The corresponding omega--form is a coboundary. The enlarged peripheric chains F_{JB}^{P} represent the twists that contain operators external with respect to the Lie-Poisson structure. The properties of new twists are illustrated by quantizing r-matrices for the algebras U(sl(3)), U(sl(4)) and U(sl(7)).
del Olmo Mariano A.
Lyakhovsky Vladimir D.
No associations
LandOfFree
Quantization of Lie-Poisson structures by peripheric chains does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Quantization of Lie-Poisson structures by peripheric chains, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Quantization of Lie-Poisson structures by peripheric chains will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-387448