Astronomy and Astrophysics – Astrophysics
Scientific paper
2007-03-21
Astrophys.J.663:394-399,2007
Astronomy and Astrophysics
Astrophysics
6 Pages (emulateapj style), 3 Figures. Accepted for publication in ApJ
Scientific paper
10.1086/518360
We surveyed thirteen very low mass (VLM; M < 0.2 M_sun) objects in the Taurus star-forming region using near-infrared diffraction-limited imaging techniques on the W.M. Keck I 10 m telescope. Of these thirteen, five were found to be binary, with separations ranging from 0.04" to 0.6" and flux ratios from 1.4 to 3.7. In all cases, the companions are likely to be physically associated with the primaries (probability > 4-sigma). Using the theoretical models of Baraffe et al. (1998), we find that all five new companions, as well as one of the primaries, are likely brown dwarfs. The discovery of these systems therefore increases the total number of known, young VLM binaries by ~50%. These new systems, along with other young VLM binaries from the literature, have properties that differ significantly from older field VLM binaries in that the young systems have wider separations and lower mass ratios, supporting the idea that VLM binaries undergo significant dynamical evolution ~5 - 10 Myr after their formation. The range of separations of these binaries, four of which are over 30 AU, argues against the ejection scenario of brown dwarf formation. While several of the young, VLM binaries discovered in this study have lower binding energies than the previously suggested minimum for VLM binaries, the apparent minimum is still significantly higher than that found among higher mass binaries. We suggest that this discrepancy may be due to the small mass of a VLM binary relative to the average perturbing star, leading to more substantial changes in their binding energy over time.
Duchene Gaspard
Ghez Andrea M.
Konopacky Quinn M.
Rice Emily L.
No associations
LandOfFree
New Very Low Mass Binaries in the Taurus Star-Forming Region does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with New Very Low Mass Binaries in the Taurus Star-Forming Region, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and New Very Low Mass Binaries in the Taurus Star-Forming Region will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-381951