Mathematics – Logic
Scientific paper
1997-04-17
Mathematics
Logic
Scientific paper
The study of classes of models of a finite diagram was initiated by S. Shelah in 1969. A diagram D is a set of types over the empty set, and the class of models of the diagram D consists of the models of T which omit all the types not in D. In this work, we introduce a natural dependence relation on the subsets of the models for the omega-stable case which share many of the formal properties of forking. This is achieved by considering a rank for this framework which is bounded when the diagram D is omega-stable. We can also obtain pregeometries with respect to this dependence relation. The dependence relation is the natural one induced by the rank, and the pregeometries exist on the set of realizations of types of minimal rank. Finally, these concepts are used to generalize many of the classical results for models of a totally transcendental first-order theory. In fact, strong analogies arise: models are determined by their pregeometries or their relationship with their pregeometries; however the proofs are different, as we do not have compactness. This is illustrated with positive results (categoricity) as well as negative results (construction of nonisomorphic models).
No associations
LandOfFree
Ranks and pregeometries in finite diagrams does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Ranks and pregeometries in finite diagrams, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ranks and pregeometries in finite diagrams will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-371125