The Spectral Problem, Substitutions and Iterated Monodromy

Mathematics – Group Theory

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

24 pages, 13 figures

Scientific paper

We provide a self-similar measure for the self-similar group $G$ acting faithfully on the binary rooted tree, defined as the iterated monodromy group of the quadratic polynomial $z^2+i$. We also provide an $L$-presentation for $G$ and calculations related to the spectrum of the Markov operator on the Schreier graph of the action of $G$ on the orbit of a point on the boundary of the binary rooted tree.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

The Spectral Problem, Substitutions and Iterated Monodromy does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with The Spectral Problem, Substitutions and Iterated Monodromy, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The Spectral Problem, Substitutions and Iterated Monodromy will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-364028

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.