Astronomy and Astrophysics – Astrophysics – General Relativity and Quantum Cosmology
Scientific paper
2009-10-07
Phys.Lett.B690:73-77,2010
Astronomy and Astrophysics
Astrophysics
General Relativity and Quantum Cosmology
8 pages; published version
Scientific paper
10.1016/j.physletb.2010.04.073
We use the Papapetrou method of multipole expansion to show that a Dirac field in the Einstein-Cartan-Kibble-Sciama (ECKS) theory of gravity cannot form singular configurations concentrated on one- or two-dimensional surfaces in spacetime. Instead, such a field describes a nonsingular particle whose spatial dimension is at least on the order of its Cartan radius. In particular, torsion modifies Burinskii's model of the Dirac electron as a Kerr-Newman singular ring of the Compton size, by replacing the ring with a toroidal structure with the outer radius of the Compton size and the inner radius of the Cartan size. We conjecture that torsion produced by spin prevents the formation of singularities from matter composed of quarks and leptons. We expect that the Cartan radius of an electron, ~10^{-27} m, introduces an effective ultraviolet cutoff in quantum field theory for fermions in the ECKS spacetime. We also estimate a maximum density of matter to be on the order of the corresponding Cartan density, ~10^{51} kg m^{-3}, which gives a lower limit for black-hole masses ~10^{16} kg. This limit corresponds to energy ~10^{43} GeV which is 39 orders of magnitude larger than the maximum beam energy currently available at the LHC. Thus, if torsion exists and the ECKS theory of gravity is correct, the LHC cannot produce micro black holes.
No associations
LandOfFree
Nonsingular Dirac particles in spacetime with torsion does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Nonsingular Dirac particles in spacetime with torsion, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Nonsingular Dirac particles in spacetime with torsion will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-35764