Astronomy and Astrophysics – Astrophysics
Scientific paper
2007-06-06
Astrophys.Space Sci.310:327-332,2007
Astronomy and Astrophysics
Astrophysics
ApSS Stromlo 5 Conference Canberra Australia, Dec 2006
Scientific paper
10.1007/s10509-007-9543-3
We explore an accretion model for low luminosity AGN (LLAGN) that attributes the low radiative output to a low mass accretion rate rather than a low radiative efficiency. In this model, electrons are assumed to drain energy from the ions as a result of collisionless plasma microinstabilities. Consequently, the accreting gas collapses to form a geometrically thin disk at small radii and is able to cool before reaching the black hole. The accretion disk is not a standard disk, however, because the radial disk structure is modified by a magnetic torque which drives a jet and which is primarily responsible for angular momentum transport. We also include relativistic effects. We apply this model to the well known LLAGN M87 and calculate the combined disk-jet steady-state broadband spectrum. A comparison between predicted and observed spectra indicates that M87 may be a maximally spinning black hole accreting at a rate of 10^{-3} solar masses per year. This is about 6 orders of magnitude below the Eddington rate for the same radiative efficiency. Furthermore, the total jet power inferred by our model is in remarkably good agreement with the value independently deduced from observations of the M87 jet on kiloparsec scales.
Jolley Erin J. D.
Kuncic Zdenka
No associations
LandOfFree
Jet-Driven Disk Accretion in Low Luminosity AGN? does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Jet-Driven Disk Accretion in Low Luminosity AGN?, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Jet-Driven Disk Accretion in Low Luminosity AGN? will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-356629