Jet-Driven Disk Accretion in Low Luminosity AGN?

Astronomy and Astrophysics – Astrophysics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

ApSS Stromlo 5 Conference Canberra Australia, Dec 2006

Scientific paper

10.1007/s10509-007-9543-3

We explore an accretion model for low luminosity AGN (LLAGN) that attributes the low radiative output to a low mass accretion rate rather than a low radiative efficiency. In this model, electrons are assumed to drain energy from the ions as a result of collisionless plasma microinstabilities. Consequently, the accreting gas collapses to form a geometrically thin disk at small radii and is able to cool before reaching the black hole. The accretion disk is not a standard disk, however, because the radial disk structure is modified by a magnetic torque which drives a jet and which is primarily responsible for angular momentum transport. We also include relativistic effects. We apply this model to the well known LLAGN M87 and calculate the combined disk-jet steady-state broadband spectrum. A comparison between predicted and observed spectra indicates that M87 may be a maximally spinning black hole accreting at a rate of 10^{-3} solar masses per year. This is about 6 orders of magnitude below the Eddington rate for the same radiative efficiency. Furthermore, the total jet power inferred by our model is in remarkably good agreement with the value independently deduced from observations of the M87 jet on kiloparsec scales.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Jet-Driven Disk Accretion in Low Luminosity AGN? does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Jet-Driven Disk Accretion in Low Luminosity AGN?, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Jet-Driven Disk Accretion in Low Luminosity AGN? will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-356629

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.