The Magnetohydrodynamic Kelvin-Helmholtz Instability: A Three-Dimensional Study of Nonlinear Evolution

Astronomy and Astrophysics – Astrophysics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

11 pages, 12 figures in degraded jpg format (2 in color), paper with original quality figures available via ftp at ftp://ftp

Scientific paper

10.1086/317789

We investigate through high resolution 3D simulations the nonlinear evolution of compressible magnetohydrodynamic flows subject to the Kelvin-Helmholtz instability. We confirm in 3D flows the conclusion from our 2D work that even apparently weak magnetic fields embedded in Kelvin-Helmholtz unstable plasma flows can be fundamentally important to nonlinear evolution of the instability. In fact, that statement is strengthened in 3D by this work, because it shows how field line bundles can be stretched and twisted in 3D as the quasi-2D Cat's Eye vortex forms out of the hydrodynamical motions. In our simulations twisting of the field may increase the maximum field strength by more than a factor of two over the 2D effect. If, by these developments, the Alfv\'en Mach number of flows around the Cat's Eye drops to unity or less, our simulations suggest magnetic stresses will eventually destroy the Cat's Eye and cause the plasma flow to self-organize into a relatively smooth and apparently stable flow that retains memory of the original shear. For our flow configurations the regime in 3D for such reorganization is $4\lesssim M_{Ax} \lesssim 50$, expressed in terms of the Alfv\'en Mach number of the original velocity transition and the initial Alfv\'en speed projected to the flow plan. For weaker fields the instability remains essentially hydrodynamic in early stages, and the Cat's Eye is destroyed by the hydrodynamic secondary instabilities of a 3D nature. Then, the flows evolve into chaotic structures that approach decaying isotropic turbulence. In this stage, there is considerable enhancement to the magnetic energy due to stretching, twisting, and turbulent amplification, which is retained long afterwards. The magnetic energy eventually catches up to the kinetic energy, and the nature of flows become magnetohydrodynamic.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

The Magnetohydrodynamic Kelvin-Helmholtz Instability: A Three-Dimensional Study of Nonlinear Evolution does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with The Magnetohydrodynamic Kelvin-Helmholtz Instability: A Three-Dimensional Study of Nonlinear Evolution, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The Magnetohydrodynamic Kelvin-Helmholtz Instability: A Three-Dimensional Study of Nonlinear Evolution will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-343941

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.