Astronomy and Astrophysics – Astrophysics
Scientific paper
2008-05-01
Astronomy and Astrophysics
Astrophysics
5 pages, MNRAS in press
Scientific paper
10.1111/j.1745-3933.2008.00490.x
We compute the average luminosity of X-ray flares as a function of time, for a sample of 10 long-duration gamma-ray burst afterglows. The mean luminosity, averaged over a timescale longer than the duration of the individual flares, declines as a power-law in time with index ~-1.5. We elaborate on the properties of the central engine that can produce such a decline. Assuming that the engine is an accreting compact object, and for a standard conversion factor between accretion rate and jet luminosity, the switch between a neutrino-cooled thin disk and a non-cooled thick disk takes place at the transition from the prompt to the flaring phase. We discuss the implications of this coincidence under different scenarios for the powering of the GRB outflow. We also show that the interaction of the outflow with the envelope of the progenitor star cannot produce flares out of a continuous relativistic flow, and conclude that it is the dynamics of the disk or the jet-launching mechanism that generates an intrinsically unsteady outflow on timescales much longer than the dynamical timescale of the system. This is consistent with the fact that X-ray flares are observed in short-duration GRBs as well as in long-duration ones.
Begelman Mitchell C.
Lazzati Davide
Perna Rosalba
No associations
LandOfFree
X-ray flares, neutrino cooled disks, and the dynamics of late accretion in GRB engines does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with X-ray flares, neutrino cooled disks, and the dynamics of late accretion in GRB engines, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and X-ray flares, neutrino cooled disks, and the dynamics of late accretion in GRB engines will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-340615